

PikaBus

[image: ReadTheDocs]
 [https://pikabus.readthedocs.org/][image: Drone CI]
 [https://travis-ci.com/hansehe/PikaBus][image: Latest Version]
 [https://pypi.python.org/pypi/pikabus/][image: _images/pikabus1.svg]
 [https://pypi.python.org/pypi/pikabus/][image: _images/pikabus2.svg]
 [https://pypi.python.org/pypi/pikabus/]The PikaBus [https://github.com/hansehe/PikaBus] library is a wrapper around pika [https://pypi.org/project/pika/]
to make it easy to implement the messages, events and command pattern, as described in detail here:

	https://pikabus.readthedocs.io/en/latest/guidelines_amqp.html

Features

	
	Secure messaging with amqp enabled by default, which includes:

	
	Durable and mirrored queues on all nodes.

	Persistent messages, meaning no messages are lost after a node restart.

	Delivery confirms with RabbitMq publisher confirms [https://www.rabbitmq.com/confirms.html].

	Mandatory delivery turned on by default to guarantee at least once delivery.

	Object oriented API with short and easy-to-use interface.

	Fault-tolerant with auto-reconnect retry logic and state recovery.

Installation

pip install PikaBus

Example

import pika
import datetime
from PikaBus.abstractions.AbstractPikaBus import AbstractPikaBus
from PikaBus.PikaBusSetup import PikaBusSetup

def MessageHandlerMethod(**kwargs):
 """
 A message handler method may simply be a method with som **kwargs.
 The **kwargs will be given all incoming pipeline data, the bus and the incoming payload.
 """
 data: dict = kwargs['data']
 bus: AbstractPikaBus = kwargs['bus']
 payload: dict = kwargs['payload']
 print(payload)
 if payload['reply']:
 payload['reply'] = False
 bus.Reply(payload=payload)

Use pika connection params to set connection details
credentials = pika.PlainCredentials('amqp', 'amqp')
connParams = pika.ConnectionParameters(
 host='localhost',
 port=5672,
 virtual_host='/',
 credentials=credentials)

Create a PikaBusSetup instance with a listener queue, and add the message handler method.
pikaBusSetup = PikaBusSetup(connParams,
 defaultListenerQueue='myQueue',
 defaultSubscriptions='myTopic')
pikaBusSetup.AddMessageHandler(MessageHandlerMethod)

Start consuming messages from the queue.
pikaBusSetup.StartConsumers()

Create a temporary bus to subscribe on topics and send, defer or publish messages.
bus = pikaBusSetup.CreateBus()
bus.Subscribe('myTopic')
payload = {'hello': 'world!', 'reply': True}

To send a message means sending a message explicitly to one receiver.
bus.Send(payload=payload, queue='myQueue')

To defer a message means sending a message explicitly to one receiver with some delay before it is processed.
bus.Defer(payload=payload, delay=datetime.timedelta(seconds=1), queue='myQueue')

To publish a message means publishing a message on a topic received by any subscribers of the topic.
bus.Publish(payload=payload, topic='myTopic')

input('Hit enter to stop all consuming channels \n\n')
pikaBusSetup.StopConsumers()

Quick Start

Clone PikaBus [https://github.com/hansehe/PikaBus] repo:

git clone https://github.com/hansehe/PikaBus.git

Start local RabbitMq [https://www.rabbitmq.com/] instance with Docker [https://www.docker.com/products/docker-desktop]:

docker run -d --name rabbit -e RABBITMQ_DEFAULT_USER=amqp -e RABBITMQ_DEFAULT_PASS=amqp -p 5672:5672 -p 15672:15672 rabbitmq:3-management

Open RabbitMq admin (user=amqp, password=amqp) at:

http://localhost:15672/

Then, run the example:

pip install PikaBus
python ./Examples/basic_example.py

Try restarting RabbitMq to notice how PikaBus tolerates downtime:

docker stop rabbit
docker start rabbit

Send or publish more messages to the running PikaBus consumer with:

python ./Examples/send_example.py
python ./Examples/publish_example.py

Contribute

	Issue Tracker: https://github.com/hansehe/PikaBus/issues

	Source Code: https://github.com/hansehe/PikaBus

License

The project is licensed under the MIT license.

Versioning

This software follows Semantic Versioning [http://semver.org/]

Table Of Contents

	Guidelines On Messaging With AMQP
	Introduction

	Contracts

	Queues

	Exchanges

	Message Headers

	Events & Commands

	Event Types

	Error Handling

	Installation

	Examples
	Consumer

	Publish Message

	Send Message

	Transaction Handling

	Error Handling

	REST API With Flask & PikaBus

	Contributing
	Dependencies

	Build System

	Unit Tests

	Publish Pypi Package

	Sphinx Documentation

	Contributors

Guidelines On Messaging With AMQP

Introduction

Before diving into the details of messaging with AMQP, we will consider some basic concepts you should consider.

Contracts

A contract defines the message payload, and is the single point of truth on what type of payload to expect in the message.

	JSON schema [https://json-schema.org/] is a great tool to describe contracts.

	Quicktype [https://app.quicktype.io/] is an online JSON schema renderer, targeting multiple frameworks such as Python, C#, Typescript and Java.

Queues

A queue is the temporary storage of a message. All queues should be unique to every consumer context.

Exchanges

An exchange is the message switch on the message broker. It routes incoming messages to subscribing queues based on message topics.

Direct Exchanges

A direct exchange matches the whole topic with subscribing queues. Thus it is used to send a message with the command pattern to a single receiver, as a one-to-one exchange.

The default direct exchange used by PikaBus is named:

	PikaBusDirect

Topic Exchanges

A topic exchange matches parts or more of the topic with subscribing queues. Thus it is used to publish a message with the event pattern to potentially many receiver, as a one-to-many exchange.

The default topic exchange used by PikaBus is named:

	PikaBusTopic

Message Headers

All messages comes with headers giving some basic information about the message. PikaBus have defined a standard set of headers to enable different service implementations to comply on a common set of headers. The default PikaBus prefix is possible to change as preferred.

	Header Key
	Header Value Type
	Description

	PikaBus.MessageId
	Guid
	Unique message id.

	PikaBus.CorrelationId
	Guid
	Unique message correlation id.

	PikaBus.ReplyToAddress
	String
	Which address/queue to send replies.

	PikaBus.OriginatingAddress
	String
	Originating address/queue.

	PikaBus.ContentType
	String
	Content type, commonly application/json.

	PikaBus.ContentEncoding
	String
	Content encoding, commonly utf-8.

	PikaBus.MessageType
	String
	Optional contract namespace of message type, commonly <CONTRACT_NAMESPACE>.<CONTRACT_TYPE>.

	PikaBus.Intent
	String
	Message intent - command or event.

	PikaBus.TimeSent
	String
	UTC timestamp at what time the message was sent, commonly 07/22/2019 11:40:19 - (month/day/year hour:min:sec).

	PikaBus.ErrorDetails
	String
	Error details attached in case of an exception.

	PikaBus.SourceQueue
	String
	Source queue of a message that has been forwarded to an error queue after it has failed.

Events & Commands

With implementing a messaging service with PikaBus you will encounter the option to Publish or Send a message. Wether to choose either one follows a few basic principles.
In short, a message shall only have one logical owner and usage of the Command or Event principle follows the message ownership.

	Command
	Event

	Used to make a request to perform an action.
	Used to communicate that an action has been performed.

	Shall be sent to the logical owner.
	Shall be published by the logical owner.

	Cannot be published.
	Cannot be sent.

	Cannot be subscribed to or unsubscribed from.
	Can be subscribed to and unsubscribed from.

	Table reference: https://docs.particular.net/nservicebus/messaging/messages-events-commands

Events

A published message is an event notified by the owner of the message to the public to communicate that an action has been performed. Keep in mind ownership of the message contract, thus the owner will be the event notifier and will have all rights reserved for publishing that message. Any subsribers to the event will subscribe on the topic of the event.

Topics

A topic is the event routing key used to publish a message, and must be unique across all services.
The topic must be explicitly defined for every contract.

Commands

A sent message is a command sent directly to a recipient of a message endpoint to request an action. In this case, the message is owned by the consumer performing the action requested. With using RabbitMq [https://www.rabbitmq.com/] as the message broker, the recipient address will be the queue name owned by the consumer.

Message Endpoints

A message endpoint is an explicit routing of a message sent to a recipient.

Event Types

There are mainly two types of events you should consider, notification and integration messages.

	Notification Events
	Integration Events

	Contains short and concise information about the event.
	Contains as much information as possible about the event.

	Calls must be made back to the originator of the event to obtain more information.
	No more calls needs to be made since all information about the event follows the message.

	Should only be used in closely coupled contexts due to coupling.
	Should be used between decoupled contexts to keep them decoupled.

Notification Events

Notification events should be short and concise, with minimal information describing the action performed. Any subsribers will react on the event usually by performing a synchronous call back to the publisher of the event to obtain more information.

	Pros
	Cons

	Event payload are kept at a minimum, and data is solely stored at the originator.
	Calls back to originator creates coupling, and you may end up with chatty services.

Integration Events

Integration events contains as much information as possible about the event to easily keep subscribers eventually consistent with the originator without coupling.

	Pros
	Cons

	All information about the event is contained within the message.
	Data is usually copied across services, and kept consistent following the eventually consistency principle.

Error Handling

Failed messages occur when a service fails processing the message after a given number of retries.

It is adviced to be as fault-tolerant as possible, and only throw an exception to fail the message when no other option is available.

By default, PikaBus implements error handling by forwarding failed messages to a durable queue named error
after 5 retry attemps with backoff policy between each attempt.

Installation

Installation with pip:

pip install PikaBus

Installation from source:

git clone https://github.com/hansehe/PikaBus.git
cd ./PikaBus/
python setup.py install

Examples

Start local RabbitMq [https://www.rabbitmq.com/] instance with Docker [https://www.docker.com/products/docker-desktop]:

docker run -d --name rabbit -e RABBITMQ_DEFAULT_USER=amqp -e RABBITMQ_DEFAULT_PASS=amqp -p 5672:5672 -p 15672:15672 rabbitmq:3-management

Open RabbitMq admin (user=amqp, password=amqp) at:

http://localhost:15672/

Then, run either of these examples:

Consumer

Following example demonstrates running a simple consumer.

import pika
from PikaBus.abstractions.AbstractPikaBus import AbstractPikaBus
from PikaBus.PikaBusSetup import PikaBusSetup

def MessageHandlerMethod(**kwargs):
 """
 A message handler method may simply be a method with som **kwargs.
 The **kwargs will be given all incoming pipeline data, the bus and the incoming payload.
 """
 data: dict = kwargs['data']
 bus: AbstractPikaBus = kwargs['bus']
 payload: dict = kwargs['payload']
 print(payload)
 if payload['reply']:
 payload['reply'] = False
 bus.Reply(payload=payload)

Use pika connection params to set connection details
credentials = pika.PlainCredentials('amqp', 'amqp')
connParams = pika.ConnectionParameters(
 host='localhost',
 port=5672,
 virtual_host='/',
 credentials=credentials)

Create a PikaBusSetup instance with a listener queue, and add the message handler method.
pikaBusSetup = PikaBusSetup(connParams,
 defaultListenerQueue='myQueue',
 defaultSubscriptions='myTopic')
pikaBusSetup.AddMessageHandler(MessageHandlerMethod)

Start consuming messages from the queue.
pikaBusSetup.StartConsumers()

input('Hit enter to stop all consuming channels \n\n')
pikaBusSetup.StopConsumers()

Publish Message

This example demonstrates how to publish a message in a one-to-many pattern with at least once guarantee.
The mandatory received flag is turned on by default, so you will get an exception if there are no subscribers on the topic.

import pika
from PikaBus.PikaBusSetup import PikaBusSetup

Use pika connection params to set connection details
credentials = pika.PlainCredentials('amqp', 'amqp')
connParams = pika.ConnectionParameters(
 host='localhost',
 port=5672,
 virtual_host='/',
 credentials=credentials)

Create a PikaBusSetup instance without a listener queue
pikaBusSetup = PikaBusSetup(connParams)

Create a temporary bus to publish messages.
bus = pikaBusSetup.CreateBus()
payload = {'hello': 'world!', 'reply': False}

To publish a message means publishing a message on a topic received by any subscribers of the topic.
bus.Publish(payload=payload, topic='myTopic')

Send Message

This example demonstrates how to send a message in a one-to-one pattern with at least once guarantee.
An exception will be thrown if the destination queue doesn’t exist.

import pika
import datetime
from PikaBus.PikaBusSetup import PikaBusSetup

Use pika connection params to set connection details
credentials = pika.PlainCredentials('amqp', 'amqp')
connParams = pika.ConnectionParameters(
 host='localhost',
 port=5672,
 virtual_host='/',
 credentials=credentials)

Create a PikaBusSetup instance without a listener queue
pikaBusSetup = PikaBusSetup(connParams)

Create a temporary bus to send messages.
bus = pikaBusSetup.CreateBus()
payload = {'hello': 'world!', 'reply': False}

To send a message means sending a message explicitly to one receiver.
The sending will fail if the destination queue `myQueue` doesn't exist.
Create `myQueue` in the RabbitMq admin portal at http://localhost:15672 if it doesn't exist (user=amqp, password=amqp)
bus.Send(payload=payload, queue='myQueue')

To defer a message means sending a message explicitly to one receiver with some delay before it is processed.
bus.Defer(payload=payload, delay=datetime.timedelta(seconds=10), queue='myQueue')

Transaction Handling

This example demonstrates how to send or publish messages in a transaction.
The transaction is automatically handled in the with statement.
Basically, all outgoing messages are published at transaction commit.

import pika
import json
from PikaBus.PikaBusSetup import PikaBusSetup
from PikaBus.abstractions.AbstractPikaBus import AbstractPikaBus

Use pika connection params to set connection details.
credentials = pika.PlainCredentials('amqp', 'amqp')
connParams = pika.ConnectionParameters(
 host='localhost',
 port=5672,
 virtual_host='/',
 credentials=credentials)

Create a PikaBusSetup instance without a listener queue.
pikaBusSetup = PikaBusSetup(connParams)

Run Init to create default listener queue, exchanges and subscriptions.
pikaBusSetup.Init(listenerQueue='myQueue', subscriptions='myQueue')

Create a temporary bus transaction using the `with` statement
to transmit all outgoing messages at the end of the transaction.
with pikaBusSetup.CreateBus() as bus:
 bus: AbstractPikaBus = bus
 payload = {'hello': 'world!', 'reply': False}
 bus.Send(payload=payload, queue='myQueue')
 bus.Publish(payload=payload, topic='myQueue')

Fetch and print all messages from the queue synchronously.
with pikaBusSetup.CreateBus() as bus:
 bus: AbstractPikaBus = bus
 message = bus.channel.basic_get('myQueue', auto_ack=True)
 while message[0] is not None:
 print(json.loads(message[2]))
 message = bus.channel.basic_get('myQueue', auto_ack=True)

Error Handling

By default, PikaBus implements error handling by forwarding failed messages to a durable queue named error
after 5 retry attemps with backoff policy between each attempt.
Following example demonstrates how it is possible to change the error handler settings, or even replace the error handler.

import pika
from PikaBus.abstractions.AbstractPikaBus import AbstractPikaBus
from PikaBus.PikaBusSetup import PikaBusSetup
from PikaBus.PikaErrorHandler import PikaErrorHandler

def failingMessageHandlerMethod(**kwargs):
 """
 This message handler fails every time for some dumb reason ..
 """
 data: dict = kwargs['data']
 bus: AbstractPikaBus = kwargs['bus']
 payload: dict = kwargs['payload']
 print(payload)
 raise Exception("I'm just failing as I'm told ..")

Use pika connection params to set connection details
credentials = pika.PlainCredentials('amqp', 'amqp')
connParams = pika.ConnectionParameters(
 host='localhost',
 port=5672,
 virtual_host='/',
 credentials=credentials)

Create a PikaBusSetup instance with a listener queue and your own PikaErrorHandler definition.
pikaErrorHandler = PikaErrorHandler(errorQueue='error', maxRetries=1)
pikaBusSetup = PikaBusSetup(connParams,
 defaultListenerQueue='myFailingQueue',
 pikaErrorHandler=pikaErrorHandler)
pikaBusSetup.AddMessageHandler(failingMessageHandlerMethod)

Start consuming messages from the queue.
pikaBusSetup.StartConsumers()

Create a temporary bus to subscribe on topics and send, defer or publish messages.
bus = pikaBusSetup.CreateBus()
payload = {'hello': 'world!', 'reply': True}

To send a message means sending a message explicitly to one receiver.
In this case the message will keep failing and end up in an dead-letter queue called `error`.
Locate the failed message in the `error` queue at the RabbitMq admin portal on http://localhost:15672 (user=amqp, password=amqp)
bus.Send(payload=payload, queue='myFailingQueue')

input('Hit enter to stop all consuming channels \n\n')
pikaBusSetup.StopConsumers()

REST API With Flask & PikaBus

Following example demonstrates how to combine a REST API with PikaBus running as a background job.
PikaBus handles restarts and downtime since it’s fault-tolerant with auto-reconnect and state recovery.
It is possible to combine PikaBus with any other web framework, such as Tornado [https://www.tornadoweb.org/en/stable/],
since it’s a self-contained background job.

import pika
import logging
from flask import Flask
from PikaBus.abstractions.AbstractPikaBus import AbstractPikaBus
from PikaBus.PikaBusSetup import PikaBusSetup

Requirements
- pip install flask

logging.basicConfig(format=f'[%(levelname)s] %(name)s - %(message)s', level='WARNING')
log = logging.getLogger(__name__)

def MessageHandlerMethod(**kwargs):
 """
 A message handler method may simply be a method with som **kwargs.
 The **kwargs will be given all incoming pipeline data, the bus and the incoming payload.
 """
 data: dict = kwargs['data']
 bus: AbstractPikaBus = kwargs['bus']
 payload: dict = kwargs['payload']
 print(f'Received message: {payload}')

Use pika connection params to set connection details
credentials = pika.PlainCredentials('amqp', 'amqp')
connParams = pika.ConnectionParameters(
 host='localhost',
 port=5672,
 virtual_host='/',
 credentials=credentials)

Create a PikaBusSetup instance with a listener queue, and add the message handler method.
pikaBusSetup = PikaBusSetup(connParams,
 defaultListenerQueue='myQueue',
 defaultSubscriptions='myTopic')
pikaBusSetup.AddMessageHandler(MessageHandlerMethod)

Start consuming messages from the queue
pikaBusSetup.StartConsumers()

Create a flask app
app = Flask(__name__)

Create an api route that simply publishes a message
@app.route('/')
def Publish():
 bus = pikaBusSetup.CreateBus()
 payload = {'hello': 'world!', 'reply': True}
 bus.Publish(payload=payload, topic='myTopic')
 return 'Payload published :D'

Run flask app on http://localhost:5005/
app.run(debug=True, host='0.0.0.0', port=5005)

Contributing

Short intro on how to continue development.

Dependencies

pip install twine
pip install wheel
pip install -r requirements.txt

Build System

The build system uses DockerBuildManagement [https://github.com/DIPSAS/DockerBuildManagement],
which is installed with pip:

pip install DockerBuildManagement

Unit Tests

DockerBuildManagement is available as a cli command with dbm.

Open build-management.yml to see possible build steps.

dbm -swarm -start
dbm -test
dbm -swarm -stop

Publish Pypi Package

	Configure setup.py with new version.

	Package: python setup.py bdist_wheel

	Publish: twine check dist/*

	Publish: twine upload dist/*

	Or with dbm:

dbm -build -publish

	Or directly with docker:

docker run -it -v $PWD/:/data -w /data python:3.8-buster bash
From inside container, run:
pip install twine wheel
python setup.py bdist_wheel
twine check dist/*
twine upload dist/*

Sphinx Documentation

Do following commands, and locate the document on http://localhost:8100

cd ./docs/
pip install -r requirements.txt
sphinx-autobuild -b html --host 0.0.0.0 --port 8100 ./ ./_build

Or with dbm:

dbm -build -run docs

Contributors

	@hansehe [https://github.com/hansehe] (author)

Index

PikaBus

[image: ReadTheDocs]
 [https://pikabus.readthedocs.org/][image: Drone CI]
 [https://travis-ci.com/hansehe/PikaBus][image: Latest Version]
 [https://pypi.python.org/pypi/pikabus/][image: _images/pikabus1.svg]
 [https://pypi.python.org/pypi/pikabus/][image: _images/pikabus2.svg]
 [https://pypi.python.org/pypi/pikabus/]The PikaBus [https://github.com/hansehe/PikaBus] library is a wrapper around pika [https://pypi.org/project/pika/]
to make it easy to implement the messages, events and command pattern, as described in detail here:

	https://pikabus.readthedocs.io/en/latest/guidelines_amqp.html

Features

	
	Secure messaging with amqp enabled by default, which includes:

	
	Durable and mirrored queues on all nodes.

	Persistent messages, meaning no messages are lost after a node restart.

	Delivery confirms with RabbitMq publisher confirms [https://www.rabbitmq.com/confirms.html].

	Mandatory delivery turned on by default to guarantee at least once delivery.

	Object oriented API with short and easy-to-use interface.

	Fault-tolerant with auto-reconnect retry logic and state recovery.

Installation

pip install PikaBus

Example

import pika
import datetime
from PikaBus.abstractions.AbstractPikaBus import AbstractPikaBus
from PikaBus.PikaBusSetup import PikaBusSetup

def MessageHandlerMethod(**kwargs):
 """
 A message handler method may simply be a method with som **kwargs.
 The **kwargs will be given all incoming pipeline data, the bus and the incoming payload.
 """
 data: dict = kwargs['data']
 bus: AbstractPikaBus = kwargs['bus']
 payload: dict = kwargs['payload']
 print(payload)
 if payload['reply']:
 payload['reply'] = False
 bus.Reply(payload=payload)

Use pika connection params to set connection details
credentials = pika.PlainCredentials('amqp', 'amqp')
connParams = pika.ConnectionParameters(
 host='localhost',
 port=5672,
 virtual_host='/',
 credentials=credentials)

Create a PikaBusSetup instance with a listener queue, and add the message handler method.
pikaBusSetup = PikaBusSetup(connParams,
 defaultListenerQueue='myQueue',
 defaultSubscriptions='myTopic')
pikaBusSetup.AddMessageHandler(MessageHandlerMethod)

Start consuming messages from the queue.
pikaBusSetup.StartConsumers()

Create a temporary bus to subscribe on topics and send, defer or publish messages.
bus = pikaBusSetup.CreateBus()
bus.Subscribe('myTopic')
payload = {'hello': 'world!', 'reply': True}

To send a message means sending a message explicitly to one receiver.
bus.Send(payload=payload, queue='myQueue')

To defer a message means sending a message explicitly to one receiver with some delay before it is processed.
bus.Defer(payload=payload, delay=datetime.timedelta(seconds=1), queue='myQueue')

To publish a message means publishing a message on a topic received by any subscribers of the topic.
bus.Publish(payload=payload, topic='myTopic')

input('Hit enter to stop all consuming channels \n\n')
pikaBusSetup.StopConsumers()

Quick Start

Clone PikaBus [https://github.com/hansehe/PikaBus] repo:

git clone https://github.com/hansehe/PikaBus.git

Start local RabbitMq [https://www.rabbitmq.com/] instance with Docker [https://www.docker.com/products/docker-desktop]:

docker run -d --name rabbit -e RABBITMQ_DEFAULT_USER=amqp -e RABBITMQ_DEFAULT_PASS=amqp -p 5672:5672 -p 15672:15672 rabbitmq:3-management

Open RabbitMq admin (user=amqp, password=amqp) at:

http://localhost:15672/

Then, run the example:

pip install PikaBus
python ./Examples/basic_example.py

Try restarting RabbitMq to notice how PikaBus tolerates downtime:

docker stop rabbit
docker start rabbit

Send or publish more messages to the running PikaBus consumer with:

python ./Examples/send_example.py
python ./Examples/publish_example.py

Contribute

	Issue Tracker: https://github.com/hansehe/PikaBus/issues

	Source Code: https://github.com/hansehe/PikaBus

License

The project is licensed under the MIT license.

Versioning

This software follows Semantic Versioning [http://semver.org/]

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 PikaBus

 		
 Guidelines On Messaging With AMQP

 		
 Introduction

 		
 Contracts

 		
 Queues

 		
 Exchanges

 		
 Direct Exchanges

 		
 Topic Exchanges

 		
 Message Headers

 		
 Events & Commands

 		
 Events

 		
 Topics

 		
 Commands

 		
 Message Endpoints

 		
 Event Types

 		
 Notification Events

 		
 Integration Events

 		
 Error Handling

 		
 Installation

 		
 Examples

 		
 Consumer

 		
 Publish Message

 		
 Send Message

 		
 Transaction Handling

 		
 Error Handling

 		
 REST API With Flask & PikaBus

 		
 Contributing

 		
 Dependencies

 		
 Build System

 		
 Unit Tests

 		
 Publish Pypi Package

 		
 Sphinx Documentation

 		
 Contributors

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

